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Supplementary Figure 1: Mechanical characterization of hydrogel matrices.  Hydrogel mechanics were 
determined using shear rheology.  Swollen, cell-laden hydrogels were measured after three days of culture 
in growth medium (identical conditions to the measurement of cellular tractions).  Samples were 
compressed to 0.2 N normal force to ensure good contact between the hydrogel and geometry.  (a) Plot of 
the shear modulus (G′) as a function of applied radial strain for polyethelyne diacrylate based (PEGDA) 
and polyethylene diacrylamide-based (PEGDAam) hydrogels.  All hydrogels were linear over the ranges 
of strain measured.  Average shear moduli obtained from these plots were 196  66, 328 and 267 
Pa for 10% w/v and 11% w/v PEGDA and 7% w/w PEGDAam hydrogels respectively.  (b) Plot of 
the shear modulus (G′) as a function of frequency for PEGDA and PEGDAam hydrogels.  Measurements 
were obtained at 1% radial strain at frequencies varying from 0.1 to 10 Hz.  Hydrogel moduli showed no 
substantial dependence on frequency over the range of applied loadings.  (c) Young’s moduli of PEGDA 
and PEGDAam hydrogel matrices.  Hydrogels were assumed to be nearly incompressible with a 
Poisson’s ratio of 0.49 leading to predicted Young’s moduli of 585  196 and 978 Pa for 10% w/v 
and 11% w/v PEGDA and 796 Pa for 7% w/w PEGDAam hydrogels respectively.  For all plots, 
errors bars are standard deviation from n = 6 samples. 
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Supplementary Figure 2: Algorithm for tracking bead displacements in 3D.  The key challenge to 
determine the displacement field within the hydrogel is to identify matching beads within the stressed 
(i.e., subjected to cell generated tractions) and relaxed (after cell lysis) datasets.  (a) For each bead in the 
stressed dataset (target beads), feature vectors are drawn to the nearest neighboring beads (target feature 
vectors).  These vectors provide a unique “signature” for each bead.  (b) The spatial coordinates of a 
target bead within the stressed dataset are transposed onto the relaxed dataset and neighboring beads 
within this relaxed dataset are identified as candidate matches.  (c) For each candidate match in the 
relaxed dataset, feature vectors are drawn to the nearest neighboring beads.  The most closely matching 
candidate and target feature vectors identify the optimal match (i.e., the same bead has been located in the 
stressed and relaxed datasets).  (d) Once a match is made, the displacement is calculated from the spatial 
coordinates of the matched beads in the stressed and relaxed datasets. 
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Supplementary Figure 3: Computational requirements and FEM accuracy. (a) Plot of the times required 
for the various steps in the computation of 3D cellular tractions using linear finite elements: bead 
tracking, finite element computation of the discretized Green’s function (FEM), and singular value 
decomposition (SVD).  Data are shown for both simplified (1,000 cellular facets) and complex (2,000 
cellular facets) meshes.  (b) Plot of the error introduced by the complex and simplified meshes used to 
discretize the cell surface and surrounding hydrogel.  The solutions obtained using quadratic elements 
were used to approximate the exact solution when compared to those obtained with linear elements.  (c) 
Vector plots of the tractions computed using the simplified (1,000 cellular facets with linear (blue), or 
quadratic (green) elements) and complex (2,000 cellular facets with linear (red) or quadratic (magenta) 
elements) finite element meshes. 
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Supplementary Figure 4: Validation using simulated tractions on a spherical cell.  (a) Computational 
domain showing surface meshes on the inner cellular sphere (50 m diameter) and outer cube of matrix 
(400 m per side).  Scale bar = 100 m, 10 m (inset).  (b) Probability densities of experimentally 
measured bead displacements (noise) in absence of cells.  Measurements are compiled from six separate 
locations within the gel from several experiments.  (c) Boxplot and probability density of surface 
discretization error measured from two independent meshings of seven different cells from multiple 
experiments.  (d) Percent of traction recovery summed over all facets, defined as: 

1
|Trecovered Tsimulated|

|Tsimulated|
  x 100, as a function of characteristic length of the simulated loadings (defined 

as the average period of oscillation on the surface of the sphere).  Plotted recoveries are in the presence of 
no noise, bead noise alone, surface noise alone, and bead and surface noise combined.  Error bars are 
standard deviation on the mean.  e) Percent of traction recovery as a function of characteristic length in 
the presence of surface and bead noise for loadings of three different magnitudes that span the range of 
tractions exerted by cells.  Note that the 10 m, 183 Pa data point is omitted because the L-curve method 
fails to find an appropriate corner for this loading.  f)  Contour plots showing the magnitude of simulated 
and recovered tractions on a representative surface in the presence of both bead displacement and surface 
discretization noise.  g) Magnified plot of the simulated and recovered tractions on each facet of the cell 
for one of the most rapidly varying traction fields (f = 8, characteristic length = 12.5 m).   
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Supplementary Figure 5: Sensitivity analysis of tractions to local hydrogel mechanics.  (a) Schematic of 
the experimental setup used to compress hydrogel samples.  For a given measurement, the sample was 
compressed to between 5-7% strain.  (b)  Plot of the errors between the experimental displacements, and 

those computed using a finite element simulation defined as: experimental dFEM

experimental
, where d is the 

displacement vector relating the positions of a given bead before and after hydrogel compression.  Data 
were binned into 5 m increments based on the vicinity of a given bead to the cell boundary and the mean 
value of each bin was used to generate a single curve for each cell.  Because the error is expected to scale 
with strain (given the small strain approximation), these values were normalized by the mean compressive 
strain for a given sample (which typically varied by ~1-2% between samples).  No significant difference 
was observed between the errors in the degradable and non-degradable hydrogels (P = 0.5 by student t-
test on the mean error of the points within 0-20 m of the void surface).  (c) Plot of the errors between the 
experimental and finite element displacements for cells in degradable hydrogels. Finite element models 
incorporating local heterogeneities were created by setting the modulus of all elements within either 5 or 
10 m of the cell boundary to 0.67X, 0.5X, or 0.2X that of the surrounding material.  All heterogeneous 
models diverged more significantly from the experimental displacements than did the homogeneous 
model (P = [0.021, 0.020, 0.019] and P = [0.038, 0.016, 0.009] for 0.67X, 0.5X and 0.2X curves at 5 m 
and 10 m respectively by paired student t-test on the mean error of points within 0-20 m of the void 
surface).  (d) Contour plot of the tractions exerted by an NIH 3T3 fibroblast encapsulated in a 978 Pa 
degradable hydrogel.  (e) Sensitivity analysis of the computed tractions under heterogeneous mechanical 

assumptions.  Percent change in tractions was calculated as homogeneous heterogeneous

Thomogeneous
 x 100 for each of the 

six heterogeneities tested above.  (f) Expanded views show the tractions from d computed under 
homogeneous material assumptions, and those computed under the assumption that the Young’s modulus 
of the hydrogel within 10 m of the cell boundary is 0.5X that of the bulk (i.e. within 10 m of the cell is 
489 Pa).  Data from b, c, and e are from n = 3 cells per condition.  Error bars in b and e are  standard 
deviation on the mean. 
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Supplementary Figure 6:  Bootstrap analysis of tractions.  (a) Schematic for the computation of 
bootstrap errors.  Experimental noise is superimposed onto best fit displacements (as computed using the 
L-curve) given by a known traction field (Toriginal) and a new traction field is recovered (Tbootstrap).  The 
Euclidian distance between the original and bootstrapped tractions is recorded as the bootstrap error.  (b) 
Probability densities of the mean bootstrap error, computed from 100 iterations on the tractions from 12 
cells (meshed with 2,000 facets each, yielding 24,000 total measurements of the mean error) and of the 
original traction magnitudes computed from 12 cells as above.  (c)  Box and whiskers plot of the mean 
bootstrap error normalized by the original traction magnitude, giving a fold error due to bead 
displacement uncertainty.  (d)  Table listing the median values, 25th percentile, 75th percentile, number of 
observations and number of outliers for each bin of c. 
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Supplementary Figure 7: Measurement of contractile moments. (a)  Tractions exerted by a human 
mesenchymal stem cell encapsulated in a 7% w/w PEGDAam based hydrogel.  For clarity, only one half 
of all vectors are shown.  (b) Component representation of the contractile moment matrix.  The Cartesian 
coordinates x, y, and z represent the distance of the centroid of a given surface facet from the center of 
mass of the cell and the forces Fx, Fy, and Fz are the Cartesian components of the force (traction 
multiplied by facet area) exerted at the corresponding facet.  Summation over all facets gives the 
appropriate term of the moment matrix.  (c) Schematic of the contractile moment matrix showing the 
orientation of the terms with respect to the Cartesian axis.  (d) Contractile moment matrix of the cell in a.  
(e) Diagonalized (via eigenvalue decomposition) contractile moment matrix.  (f)  Plot of the net 
contractile moments of cells and multicellular spheroids. 
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Supplementary Figure 8: 3D traction datasheet.  Bovine pulmonary artery smooth muscle cells were 
encapsulated in a 7% w/w PEGDAam based hydrogel and allowed to spread over 72 hours.  To measure 
the tractions exerted by the cell, volumetric images were acquired before and after treatment with 0.5% 
SDS.  In order to verify the accuracy of the reconstructed tractions, it is useful to generate a datasheet 
displaying all relevant data for a given cell.  (a) Surface mesh of the cell showing measured bead 
displacements in the hydrogel.  Scale bar = 20 m.  (b) Plot of the “best fit” bead displacements that 
would be predicted based on the recovered cellular tractions.  (c) Plot of the errors in bead displacements 
between the experimentally measured and best fit fields.  (d) Plot of the tractions exerted by the cell.  
Scale bar = 20 m.  (e)  Plots of the bead displacement and peak (maximum magnitude) principal 
hydrogel strain as a function of distance from the surface of the cell.  (f) Histogram of the errors between 
the measured and best fit bead displacements.  (g) Histogram of the peak principal strains induced by 
correction for passive hydrogel drift and swelling.  (h) Histogram of the cellular tractions.  (i) Plot of the 
L-curve (log-log plot of the solution norm vs. the residual norm as a function of lambda) used to calculate 
the correct amount of regularization.  The corner of the L-curve indicates the optimal amount of 
regularization.  (j) Plot of the curvature of the L-curve showing a distinct minimum in curvature at the 
optimal value of lambda. 
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Supplementary Figure 9: Measurement of cellular tractions in different contexts.  (a) NIH 3T3 
fibroblasts were encapsulated in an 11% w/v PEGDA based hydrogel and allowed to spread for 72 hrs.  
Two cells in the vicinity of each other extend processes preferentially away from the neighboring cell and 
pull back inward towards their respective centers of mass.  These data demonstrate that the more complex 
configuration of two neighboring cells does not limit the algorithm in its ability to reconstruct tractions.  
(b) Human mesenchymal stem cells were encapsulated in a 7% w/w PEGDAam based hydrogel and 
allowed to spread over 72 hours.  These cells invaded into the surrounding hydrogel with long slender and 
occasionally branched extensions.  Strong forces were located predominantly near the tips of these 
extensions and pulled inward back toward the center of mass of the cell.  (c) Lewis lung carcinoma cells 
were encapsulated in a 7% w/w PEGDAam based hydrogel and cultured for 72 hrs.  During this time, the 
cells did not invade into the surrounding hydrogel as did the other cell types measured, but rather rapidly 
proliferated forming a multicellular spheroid.  The expanding spheroid deformed the surrounding 
hydrogel and exerted predominantly outward normally directed tractions that were distributed over the 
surface of the multicellular structure.  Such ‘pressures’ have been observed in large tumor masses, but not 
previously appreciated in small spheroids.  All scale bars = 20 m. 
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Supplementary Figure 10: Measurement of dynamic tractions exerted by spreading cells.  NIH 3T3 
fibroblasts were encapsulated in an 11% w/v PEGDA based hydrogel and allowed to begin spreading.  
The cell and surrounding hydrogel were then imaged for 3.5 hours in 30 minute intervals.  (a) During this 
time, the labeled extensions (i and ii) exerted tractions as they extended into the matrix.  Interestingly, this 
spreading seemed to be biased, occurring only on one face of the cell.  In contrast, strong forces were also 
exerted by small dynamic protrusions on the face of the cell opposite these spreading extensions.  Scale 
bar = 20 m.  (b) Tractions exerted by the extensions labeled in a are plotted as a function of the distance 
from the center of mass of the cell.  Consistent with our observations from other cells, these invading 
structures showed strong forces proximal to the leading edge, with a drop in traction near the tip. 
 



SUPPLEMENTARY NOTE 1 

Calculation of bead displacements and hydrogel strain 

Multipage TIFF images of the hydrogel exterior to the cell were imported into Matlab (The Mathworks) 

and bead centroids were identified as described previously1.  Once bead centroids were identified, beads 

in the stressed (subject to cell generated tractions) dataset were matched to beads in the relaxed (after cell 

lysis) dataset using a feature vector-based algorithm relating the relative position of each bead to its local 

neighbors (Supplementary Fig. 2).  For each target bead to be matched in the stressed dataset, feature 

vectors were generated to its nearest neighbors, measured by the Euclidian distance between bead 

centroids (Supplementary Fig. 2a).  Candidate matches for the target bead in the relaxed dataset were 

identified as those beads nearest to the spatial coordinates of the target bead in the stressed dataset 

(Supplementary Fig. 2b).  For each of these candidate matches, feature vectors were generated to the 

nearest neighbors in the relaxed dataset and compared to the target feature vectors (Supplementary Fig. 

2c). The candidate bead with feature vectors most closely matching the target bead was identified as 

being the same bead in the stressed and relaxed datasets, and the displacement recorded (Supplementary 

Fig. 2d).  The number of target feature vectors, candidate matches, and candidate feature vectors can be 

optimized for a given displacement field; however, it is in general necessary to include a greater number 

of candidate feature vectors than target feature vectors as the relationship between nearest neighbors can 

change between the stressed and relaxed datasets.  In these cases, the best matching candidate feature 

vectors are used. 

 

To compute the bead displacements used for calculating cellular tractions, we implemented two rounds of 

bead tracking as follows.  A preliminary round of bead tracking was performed to identify initial bead 

displacements.  To correct for temperature-dependent swelling and mechanical drift in the gel, we applied 

a quadratic correction to the displacement of all beads, computed by minimizing the total bead 

displacement as follows.  We defined the objective function as: 

 



min Cstressed ℱ Crelaxed
T      (1) 

 

Unless otherwise designated, all norm symbols signify the Frobenious norm.  Cstressed and Crelaxed are m x 3 

matrices in which each row is the position vector of a bead centroid in the stressed or relaxed dataset and 

m is the total number of beads tracked.  The function ℱ accepts the centroids of the beads in the relaxed 

dataset and shifts the x, y, and z components according to a quadratic correction.   

 

ℱ C ∑ ∑      (2) 

 

where Q and M are matrices containing coefficients of quadratic terms of single and mixed variables 

respectively, A and d contain affine terms, (Cik)
2 represents the square of component ik of C, and P is the 

following permutation matrix: [0,1,0;0,0,1;1,0,0].  Together, Q, M, A, and d comprise 30 terms over 

which the optimization of equation (2) was carried out using built-in functions for constrained non-linear 

optimization in Matlab.  After applying this correction, a second round of bead tracking was performed to 

compute the final displacement field, which was then processed using a running average filter to remove 

misidentified beads.   

 

To compute the strain in the hydrogel surrounding the cells, bead displacements were interpolated onto a 

uniform 4 m cubic grid using Matlab.  This grid size was chosen to be just greater than the average 

distance between beads.  The Green-St. Venant (Lagrangian) strain tensor, E=(FTF-1)/2, was estimated at 

the center of each element, where 1 is the identity tensor and the deformation gradient F was estimated 

using standard tri-linear interpolation shape functions.  

 

REFERENCES FOR SUPPLEMENTARY NOTE 1 

1. Gao, Y.X. & Kilfoil, M.L. Accurate detection and complete tracking of large populations of features in 
three dimensions. Opt Express 17, 4685-4704 (2009). 



SUPPLEMENTARY NOTE 2 

Generation of a discretized Green’s function and calculation of cellular tractions 

We generated a discretized Green’s function relating tractions on the cell surface to displacements within 

the gel using the finite element method.  3D tetrahedral meshes were obtained as described in Methods, 

and used to generate the forward solution relating bead displacements in the gel to unit tractions applied 

to each facet on the surface of the cell in each of the three Cartesian directions.  From each of these 

solutions, the experimentally measured bead coordinates were queried for the computed displacements.  

Because both the bead coordinates and the location of applied tractions are at discrete locations, the 

relation between bead displacements within the gel u and tractions on the surface of the cell T is now 

transformed into a set of linear equations 

 

u ΓT     (1) 

 

where we have adopted the notation used in ref 1 in which  

 

u r ; r ; r ; r ; r ; r ; … ; r ; r ; r  

 

is a 3m column vector, where m is the number of tracked beads and r is the position vector of each bead. 

 

T r ; r ; r ; r ; r ; r ; … ; r ; r ; r  

 

is a 3n column vector, where n is the number of discretized facets on the surface of the cell and r′ is the 

position vector of each facet.  Subscripts for both u and T in these definitions represent displacements and 

tractions respectively along each Cartesian axis. 

 



  is an m x n matrix of the following form:  

 

     (2) 

 

Each element of  is a 3 x 3 submatrix relating the displacement of bead m in direction i in response to a 

load on facet n in direction j: 

 

g g g
g g g23
g g g

     (3) 

 

We used 0th order Tikhonov regularization together with the L-curve criterion2 for implementing and 

choosing the correct value for the Lagrange parameter, λ, resulting in the following optimization: 

 

min |ΓT u| λ |T|      (4) 

 

This optimization problem was solved by singular value decomposition using the suite of Matlab routines 

“Regularization tools” by PC Hansen3.  To save computational resources, only the displacements of beads 

within 20 m from the cell surface were used to calculate cellular tractions.  Incorporating measurements 

of beads greater than 20 m from the cell surface did not substantially change the recovered tractions.   

 

REFERENCES FOR SUPPLEMENTARY NOTE 2 

1. Schwarz, U.S. et al. Calculation of forces at focal adhesions from elastic substrate data: the effect of 
localized force and the need for regularization. Biophys J 83, 1380-1394 (2002). 

2. Hansen, P.C. in Computational Inverse Problems in electrocardiography (Advances in Computational 
Bioengineering), Vol. 5. (ed. P.R. Johnston) 119-142 (WIT Press, Southampton; 2001). 

3. Hansen, P.C. Regularization Tools Version 4.0 for Matlab 7.3. Numerical Algorithms 46, 189-194 (2007). 
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SUPPLEMENTARY NOTE 3 

Computational resources and finite element accuracy 
 
To illustrate the computational requirements necessary for the calculation of cellular tractions, we 

performed timing analysis of the various steps.  The main computational steps in our analysis are 1) bead 

tracking, 2) finite element computation of a numerically generated Green’s function, and 3) singular value 

decomposition of the discretized Green’s matrix.  The computational expense of each of these steps 

depends on the complexity and resolution of the finite element mesh used to discretize the cell and 

surrounding hydrogel, and the number of beads tracked in each measurement.  As stated in Methods, all 

data presented in the manuscript were calculated using a Dell Precision T7400 workstation equipped with 

dual quad core Intel Xeon processors and 16 GB of RAM.  Because many of the algorithms in each step 

can take advantage of parallel processing, we compared the time required using two, four and eight 

CPU’s (Supplementary Fig. 3a).  The total time required to calculate cellular tractions was 

approximately 4.5 hours per dataset with the majority of this time spent on computing the bead 

displacements.  Additionally, we report the time required to compute tractions on a simplified finite 

element mesh.  These simplified meshes dramatically reduce the computational requirements and time 

(down to 3.3 hrs per dataset), yet still capture the fundamental aspects of the cellular tractions.  To 

determine the error introduced by using these finite element meshes, we compared the computed tractions 

obtained with linear elements versus quadratic elements.  The tractions computed using 2,000 linear 

elements to discretize the cell surface differed by approximately 30% from those using quadratic elements 

while tractions computed using a simplified mesh of 1,000 linear elements differed by approximately 

45% (Supplementary Fig. 3b).  Nonetheless, in each of these cases, the qualitative differences between 

the tractions computed using linear or quadratic elements were nearly indistinguishable (Supplementary 

Fig. 3c).  It should be noted, however, that coarser discretizations of the cell surface may introduce 

additional error due to the inability of highly simplified meshes to accurately capture complex cellular 

morphologies. 
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Validation using simulated tractions 

In order to validate the method and assess the resolution of traction reconstructions, we used simulated 

loadings on a simplified spherical cell (Supplementary Fig. 4a).  Oscillating tractions were modeled 

with amplitudes that varied sinusoidally with respect to the spherical coordinate , and three different 

loadings were chosen to cover the range of tractions exerted by cells (183,  743 and  1467 Pa).  The 

frequency (f) was varied from two to ten periods per 360 degrees. Bead displacements were then solved 

using the forward finite element solution.  Experimentally measured noise was then superimposed onto 

these displacements and the corresponding loadings were recovered (see Methods for more detail).  In 

this setting, there are two primary sources of experimental noise: 1) uncertainty of the bead 

displacements, and 2) uncertainty in the discretization of the cell surface.  Our bead tracking resolution 

was approximately  0.075 m and  0.210 m (standard deviation) in the horizontal and axial planes 

respectively (Supplementary Fig. 4b), whereas the uncertainty of the discretized cell surface was non-

normally distributed with a median magnitude of 0.176 m (Supplementary Fig. 4c).  In absence of 

noise, the accuracy of the recovered tractions decreased with the characteristic length of the simulated 

loadings, but generally matched to within 20% for all original loadings measured.  Addition of bead 

displacement error or surface discretization error, either alone or in combination, reduced accuracy of the 

recovered loadings by an additional 10-30% (Supplementary Fig. 4d).  The reconstruction was also 

sensitive to the magnitude of the applied loadings, since these determined the magnitude of the bead 

displacements and consequently the signal to noise ratio for any given measurement.  Oscillating loadings 

with amplitudes of either 1467 or 734 Pa showed little difference in the accuracy of the recovered 

tractions.  However, loadings with an amplitude of 183 Pa were more sensitive to experimental noise, 

with the L-curve method failing for loadings with a characteristic length of 10 m (Supplementary Fig. 

4e).  However, despite these limitations, the general periodic features of even the more complex simulated 

loadings were still captured (Supplementary Fig 4f, g).   
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Assessment of local hydrogel mechanics and sensitivity analysis of the recovered tractions 

Because cell spreading and invasion require the use of degradable hydrogels, it is possible that the local 

mechanics near the cell membrane may weaken relative to the bulk hydrogel properties.  To test this 

possibility, we measured the hydrogel deformation near and far from the voids where cells were 

previously located (i.e. after treatment with SDS) in response to a well defined compressive load in both 

degradable and non-degradable PEG gels (Supplementary Fig. 5a).  We compared displacement fields 

obtained experimentally versus those generated by finite element simulations using homogeneous 

material properties (reported as error in Supplementary Fig. 5b), and found no significant difference 

between the degradable and non-degradable materials, suggesting that local degradation exterior to the 

cell is not occurring in the degradable gels or not to an extent that contributes to alterations in bead 

displacements.  Further supporting this conclusion, finite element simulations that incorporate local 

weakening of the hydrogel near the cell boundary diverge to a greater extent from the observed 

experimental displacements than do those using a homogeneous material assumption (Supplementary 

Fig. 5c).  Importantly, because our method calculates a numerical Green’s function, we are able to use all 

bead measurements with suitable signal to noise (often up to 20 m or greater from the cell surface), and 

as a result, traction recovery is relatively insensitive to small local changes in material properties. This 

can be illustrated by setting all finite elements near the cell surface to be locally weaker than the 

surrounding hydrogel and then computing the tractions based on experimentally observed bead 

displacements. For example, a 50% decrease in local modulus within 5 m of the cell changed the 

calculated tractions in by approximately 15% when compared to homogeneous conditions, whereas a 50% 

decrease in local modulus within 10 m of the cell changed the tractions by approximately 30% 

(Supplementary Fig. 5d, e).  Even under these conditions (i.e. a 50% decrease at 10 m from the cell), 

the computed tractions were still qualitatively similar to those under the homogeneous assumption 

(Supplementary Fig. 5f).   
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Bootstrap analysis 

Bootstrap analysis is a useful method to determine the effects of bead displacement uncertainty on the 

traction measurements for actual cells1, 2.  Briefly, after computation of the tractions for a given cellular 

geometry, the forward solution is solved to record the best fit bead displacements (i.e. the bead 

displacements that would be predicted from the computed tractions).  Experimental noise, measured as 

described in Methods, was then randomly sampled and superimposed onto these displacements and the 

inverse problem was solved to recover a new traction field.  The difference between the original tractions 

and the recovered bootstrap tractions gives a measurement of the possible variation in tractions that could 

be attributed to noise (Supplementary Fig. 6a).  We computed the mean bootstrap error for each traction 

measurement from 100 bootstrap iterations (ie 100 independent, random samples of experimental noise) 

and compiled measurements of the mean bootstrap error from traction measurements of 12 total cells 

(encapsulated in 978 Pa hydrogels and meshed with 2,000 facets each to yield 24,000 traction 

measurements).  Bootstrap errors were predominantly in the range of 25-75 Pa, which gives a lower 

bound on the sensitivity of the traction measurements. In contrast, traction magnitudes were substantially 

higher (Supplementary Fig. 6b).  Box and whiskers plots of the relative magnitude of bootstrap error 

compared to the traction magnitudes reveal that bead displacement uncertainty contributes roughly 10 

percent uncertainty to the reported tractions (based on median values) (Supplementary Fig. 6c, d).  This 

contribution is higher for smaller tractions (e.g. below 50 Pa), but substantially reduced for larger 

tractions. 

 

Measurement of contractile moments 

A useful metric for quantifying cellular tractions is the “contractile moment”3, defined here as 

r r where ri are the Cartesian components of the position vector for a given cell facet with respect 

to the center of mass of the cell, and Fj are the Cartesian components of the force (traction multiplied by 

facet area) exerted at the corresponding facet (Supplementary Fig. 7a-d).  The diagonal terms of this 
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matrix are associated with dilatational or contractile tractions, while the off diagonal terms are associated 

with tractions that exert torques about the center of mass of the cell.  The near symmetric nature of these 

matrices (before any correction) is indicative of torque equilibrium.  After symmetrization (by taking the 

mean of the off-diagonal terms), the contractile moment matrix can be diagonalized by eigenvalue 

decomposition ( ) to reveal the principal contractile (or dilatational) terms (Supplementary Fig. 7e).  

We found that the contractile moments of the cells in this study were of similar order to those presented in 

ref 3 for cells cultured on top of a planar fibronectin coated polyacrylamide gel with Young’s modulus of 

~1,200 Pa, which suggests that a change in dimensionality alone (i.e. cells fully encapsulated within a 3D 

matrix as opposed cultured on top of a 2D planar surface) does not dramatically alter the total contractile 

potential of a cell.  This is further quantified by the trace of the contractile moment matrix which gives the 

net contractile moment of the cell.  This scalar invariant can be used as a metric for total cellular 

contractility.  All single cells measured demonstrated a negative net moment (indicating net inward 

contraction), whereas the multicellular tumor spheroids demonstrated a positive net moment (indicating 

expansion or dilation) (Supplementary Fig. 7f). 

 

REFERENCES FOR SUPPLEMENTARY NOTE 3 
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